Committee Meeting 1

Emma Timmins-Schiffman May 21, 2010

Outline

- Guiding Themes of Research
- Title & Objectives
- Objective 1 Approaches
- Objective 2 Approaches
- Objective 3 Approaches
- Accomplishments to Date
- Future Perspectives

Guiding Themes of Research

- How do environmental changes affect populations?
 - Organism perspective: changes in physiology
 - Long-term perspective: changes in population dynamics & genetics
 - Focus on the model organism Pacific oyster, *Crassostrea gigas*

Outline

- Guiding Themes of Research
- Title & Objectives
- Objective 1 Approaches
- Objective 2 Approaches
- Objective 3 Approaches
- Accomplishments to Date
- Future Perspectives

Title

The Effects of Human-mediated Environmental Change on the Physiology of the Pacific Oyster, *Crassostrea gigas*: Immediate & Long-term Perspectives

Objective 1

 Characterize the physiological response of bivalves to stressors of environmental change.
Laboratory trials

Objective 2

- Assay the effects of local environmental parameters and contaminants on wild sets of *C*. *gigas*.
 - Environmental sampling
 - Apply results from 1 + gene discovery

Objective 3

Determine the population genetic resources available for potential adaptation to environmental change.

Discover adaption-correlated SNPs

Outline

- Guiding Themes of Research
- Title & Objectives
- Objective 1 Approaches
- Objective 2 Approaches
- Objective 3 Approaches
- Accomplishments to Date
- Future Perspectives

Objective 1: Characterize the physiological response of bivalves to stressors of environmental change.

- What causes hatchery mortality events?
- How do oysters respond physiologically to environmental stress?
- How do changes in the environment affect the host-pathogen relationship?
- Develop a predictive assay of markers indicative of individual and multiple stressors.

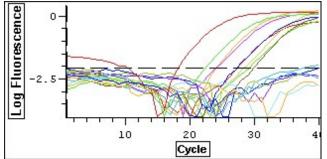
- Laboratory trials
 - Single -> dual -> multiple stressors
 - Host only (larvae) & host + pathogen (Vibrio tubiashii)

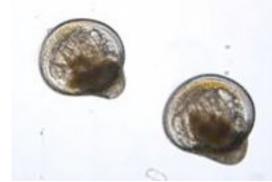
Temp.

Pathogen

pН

Metal

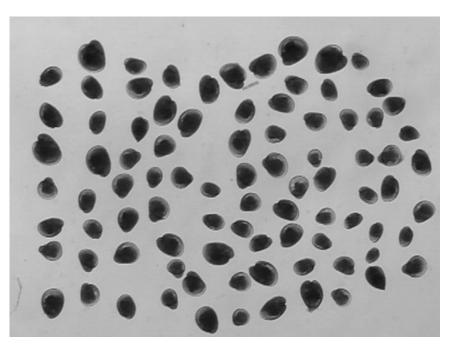

- pH: 380 & 840 pCO2
- Temperature: 12C & 25C
- Stages of development: D-hinge, veliger, pediveliger


Challenges

- 2 weeks each get larvae & algae from hatchery before each trial period
- 5/31: grow larvae with algae sample for baseline
- 6/7: CO₂ challenges
- 6/21: CO₂ + Vt challenges
- 7/5: metal bioavailability
- FHL: pathogen + CO₂ + temperature

- Sampling protocol
 - **4-8** chambers per treatment
 - 2 draws of larvae each day from each chamber
 - ~50-200 larvae for each draw (sample 100-400/ day per chamber)
- Sample 11,200-44,800 larvae per treatment period
- Need at least 50,000 larvae every 2 weeks

- Measuring the effects of the treatments on oyster larvae
 - Gene expression
 - [•] Mortality
 - Behavior
- Results will provide information on lethal and non-lethal effects of stressors



- Gene expression
 - Determine impacted physiological pathways
 - Develop assays for future applications
- Methods
 - Targeted genes
 - Differential display
 - General stress: Western blot

Behavior

- Settlement shell in bottom of chamber
- Development time
- Bell dissolution
- Lipid content effects on nutrition

Miller et al. 2009

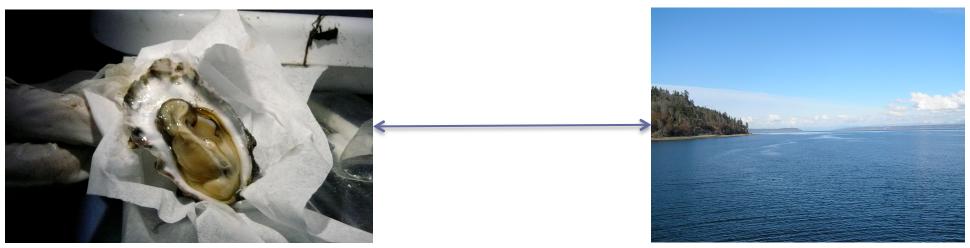
- Intra-system microbial community
 - 1 mL water from each chamber each day
 - Filter out larvae
 - Vacuum filter sample
- Extract DNA & PCR for specific pathogens

Objective 2: Assay the effects of local environmental parameters and contaminants on wild sets of *C. gigas*.

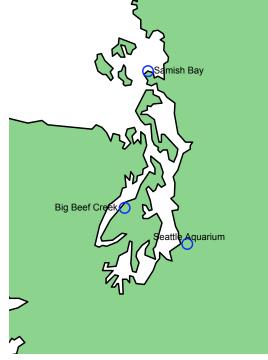
- How is larval response different inside the hatchery?
- Are there different stresses and responses around Puget Sound?
 - How does this affect oyster phenotype?

- Hatchery sampling
 - Oyster larvae (C. gigas)
 - Microbial community

Puget Sound sampling


- [•] Sibling juveniles (*C. gigas*)
- Passive sampling devices

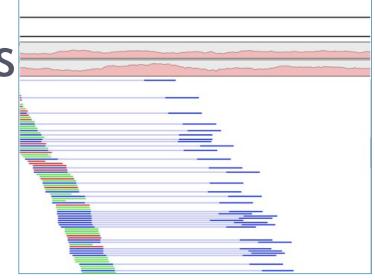
- Hatchery sampling what are the oyster larvae experiencing now?
 - Early spring-summer, 2 years
 - Netarts, OR & Quilcene, WA (hatcheries)
 - Netarts Bay & Dabob Bay (field)
 - Inside vs. outside hatchery
- Metrics
 - Candidate genes (assay) & Western blot
 - Environment: salinity, temperature, alkalinity & DIC, V. tubiashii
 - Settlement (spat collectors at Taylor?)


- Details of hatchery oyster sampling
 - Outside (weekly)
 - Pump near water intake
 - Salinity, T, pCO₂, pH, plankton, *V. tubiashii*
 - Inside (weekly)
 - Oyster larvae tanks (2 reps per tank, 3 tanks)
 - T, alkalinity, DIC, salinity, V. tubiashii
- Complementary data from Netarts for comparison?

- Environmental sampling of microbial communities at Quilcene hatchery (weekly)
 - Sample at locations inside and outside of hatchery
- Use ARISAs to characterize microbial community structure
 - How is it affected by different environmental conditions?
 - Are there predictors of mortality events?

- Lab data + environment data -> oyster response to environmental stress
- Specific impacts which stressors are responsible?
- Oyster as proxy for ecosystem health

- Semi-monthly sampling of 3 sites in Puget Sound with different human impact levels
 C. gigas sibling juveniles
- Sampling scheme
 - Gills gene expression & epigenetics
 - Hemocytes immune response
 - Growth & mortality


- Monitor contaminants at sampling sites
- Use passive sampling devices (2 kinds that collect complementary data)
- Measure:
 - Pharmaceuticals
 - Personal care products
 - POPs
- Deploy at sampling sites
 - Change devices every month
- Results: Which contaminants are the most problematic for oyster & ecosystem health?

Objective 3: Determine the population genetic resources available for potential adaptation to environmental change.

- Are there genotypes linked to potential for adaptation in climate change?
- How will current and future change affect Ne and other population genetic parameters?
- How does environmental change modify the genetic profile of populations?
- Are there inter-species differences in potential for adaptation?

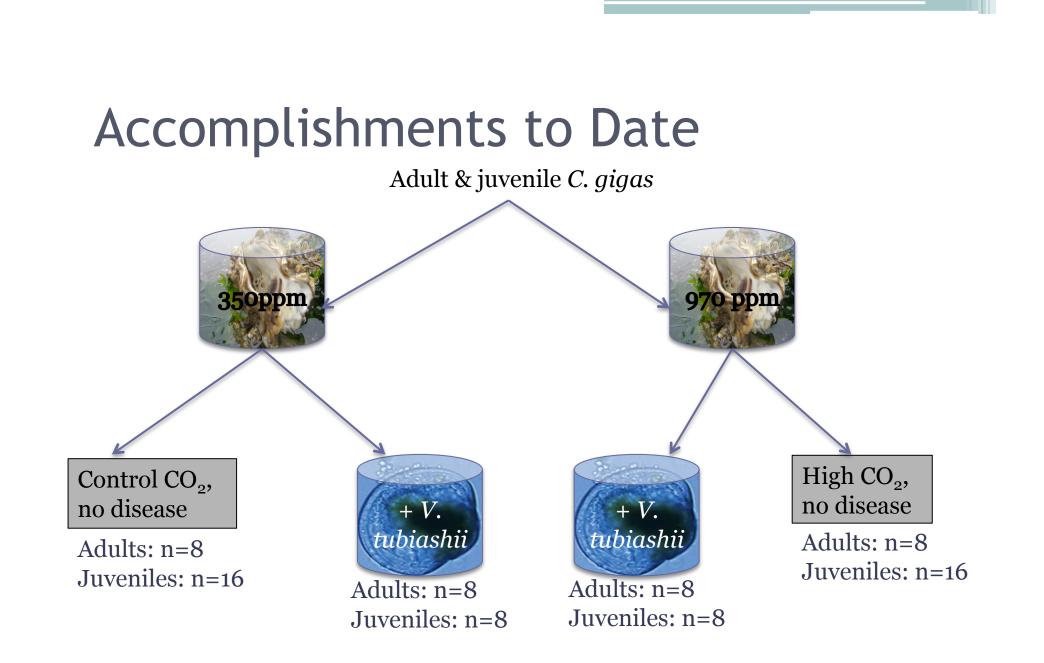
- During laboratory stress trials, sample pre- and posttrial larvae
- Find SNPs using existing NGS data
 - Which SNPs are consistently different between mortalities & survivors?
 - Are the SNPs associated with any genes?

- Links to Objective 1
 - Same larvae used for physiology analysis genotype-phenotype link
- Genetic diversity in survivors
 - Does environmental change create a bottleneck?
- Do different SNPs have a functional significance at the population level?

N

Environment

Ne

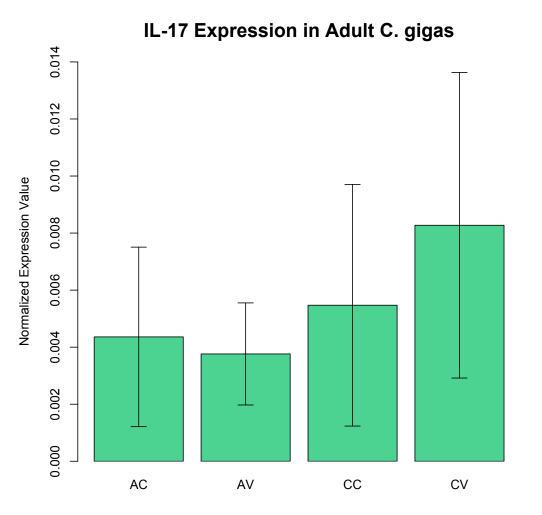

Olympia oysters, Ostrea lurida • Wild population • Inter-species difference in environmental response Distribution of SNPs throughout Puget Sound area • Sample wild larvae: 2 locations, twice during season • Same challenge trials as C. gigas Jse NGS to find SNPs

Outline

- Guiding Themes of Research
- Title & Objectives
- Objective 1 Approaches
- Objective 2 Approaches
- Objective 3 Approaches
- Accomplishments to Date
- Future Perspectives

Accomplishments to Date

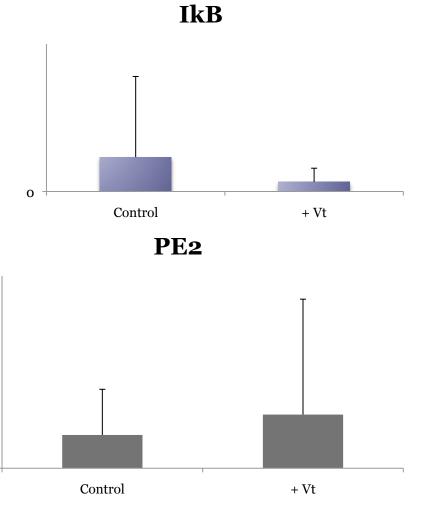
- Stress trials of *C. gigas*
 - Juvenile & adult C. gigas and elevated CO2 and V. tubiashii presence
 - [•] Juveniles challenged with V. tubiashii
 - [•] Juveniles challenged with copper nitrate
 - Maintain larvae in experimental larval chambers



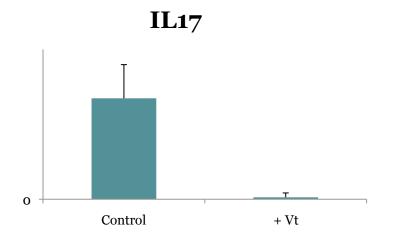
Preliminary Results

Up-regulation of Prx6 to elevated CO2 and to secondary stress of *V*. *tubiashii*.

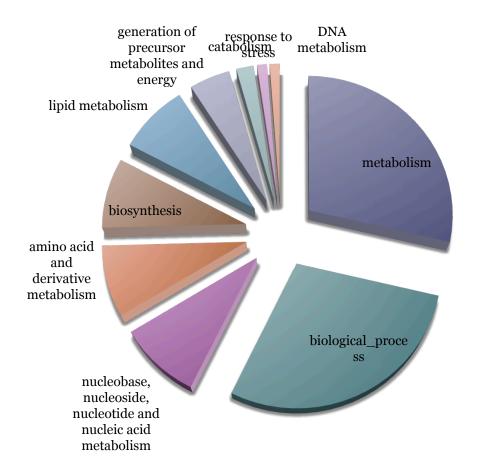
Preliminary Results


Up-regulation of IL-17 in exposure to elevated CO2 and secondary stressor *V. tubiashii*.

Differential Display: Response to CO₂


Primer Set	blastx	EST
10	TGF-B-inducible nuclear protein	
12 (200 bp)	Chaperonin subunit	Cg in temp. stress
38	NADH dehydrogenase	Cg
18	Beta-tubulin	Oyster stress
9	Matrilin (ECM)	Oyster stress

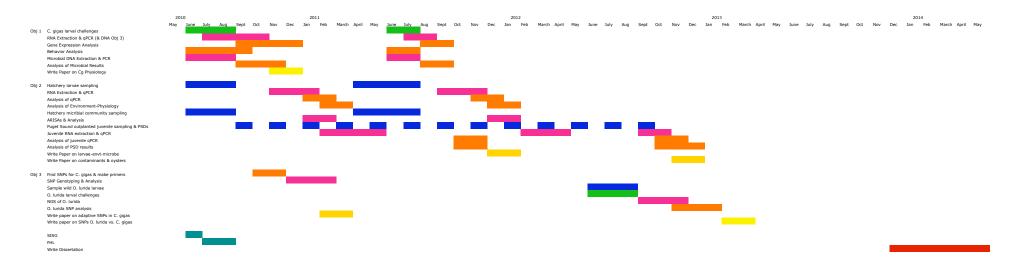
Response to V. tubiashii


Juvenile *C. gigas* challenged with bacteria for 3 hours.

0

GO from Sigenae & SwissProt: metal binding

n = 470


Genes of Interest

- □ Thioredoxin reductase: thioredoxin reductase, glutaredoxin and gluathione reductase activities. Catalyzes disulfide bond isomerization.
- □ Fatty acid desaturase: catalyzes biosynthesis of highly unsaturated fatty acids.
- mRNA decapping enzyme: degradation of mRNA in turnover and decay.
- □ Hematopoietic prostaglandin D synthase: implicated in smooth muscle function & exhibits low glutathione peroxidase activity.
- □ Copper-transporting ATPase: in copper excess, functions in efflux of copper from cells.

Outline

- Guiding Themes of Research
- Title & Objectives
- Objective 1 Approaches
- Objective 2 Approaches
- Objective 3 Approaches
- Accomplishments to Date
- Future Perspectives

Timeline

Short-term Goals

- Establish regular sampling procedure
 - Outplant juvenile sibling C. gigas week of September 6, 2010
- Begin stress trials
 - Trouble-shoot system
 - Feasibility of multiple stressors
 - Get larvae, grow food
- Design project for FHL
- Grants!!

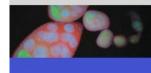
FrídayHarbor Laboratories

Department Intranet | Director

NIVERSITY OF WASHINGT

DEPARTMENT OF BIOSTATISTICS Plan of Study

School of Oceanography


Completed courses

- Stats
- Histology of Disease
- Integrative Environmental Physiology
- **Proposal Writing**
- Literature seminar
- R Programming
- Intended courses
 - Climate Science seminar
 - Multivariate statistics
 - FHL
 - SISG
 - Genomics
 - **Population genetics**
 - Statistics for genome sciences

WASHINGTON - SCHOOL OF PUBLIC HEALTH DEPARTMENT OF

Genome Sciences ACADEMICS

Home | Faculty | Academics | News & Events | Support Genome Sciences | Outread

2010-2011 Course Schedule Autumn 10 --- Winter 11 --- Spring 11 --- Summer 1

School of Aquatic and Fishery Sciences